Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(11): e2303910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180445

RESUMEN

Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.


Asunto(s)
Nanopartículas , Nanopartículas/química , Animales , Ratones , Proteínas/química , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/química , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/agonistas
2.
Nat Commun ; 12(1): 883, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563988

RESUMEN

Recent advances in computational methods have enabled the predictive design of self-assembling protein nanomaterials with atomic-level accuracy. These design strategies focus exclusively on a single target structure, without consideration of the mechanism or dynamics of assembly. However, understanding the assembly process, and in particular its robustness to perturbation, will be critical for translating this class of materials into useful technologies. Here we investigate the assembly of two computationally designed, 120-subunit icosahedral complexes in detail using several complementary biochemical methods. We found that assembly of each material from its two constituent protein building blocks was highly cooperative and yielded exclusively complete, 120-subunit complexes except in one non-stoichiometric regime for one of the materials. Our results suggest that in vitro assembly provides a robust and controllable route for the manufacture of designed protein nanomaterials and confirm that cooperative assembly can be an intrinsic, rather than evolved, feature of hierarchically structured protein complexes.


Asunto(s)
Química Computacional , Nanoestructuras/química , Proteínas/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Subunidades de Proteína/química
3.
Proc Natl Acad Sci U S A ; 112(12): 3704-9, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25775555

RESUMEN

We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.


Asunto(s)
Carbono/química , Ingeniería de Proteínas/métodos , Proteínas/química , Biomasa , Vías Biosintéticas , Ciclo del Carbono , Catálisis , Clonación Molecular , Escherichia coli/enzimología , Formaldehído/química , Formiatos/química , Espectroscopía de Resonancia Magnética , Reacción en Cadena de la Polimerasa , Programas Informáticos , Termodinámica
4.
Science ; 335(6066): 308-13, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22267807

RESUMEN

Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).


Asunto(s)
Alginatos/metabolismo , Biocombustibles , Escherichia coli/genética , Etanol/metabolismo , Ingeniería Metabólica , Phaeophyceae/metabolismo , Algas Marinas/metabolismo , Vibrio/enzimología , Alginatos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Biomasa , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/metabolismo , Fermentación , Genes Bacterianos , Glucosa/metabolismo , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Ácido Láctico/metabolismo , Manitol/metabolismo , Redes y Vías Metabólicas , Sistemas de Lectura Abierta , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Vibrio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...